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ABSTRACT 

The well-known relationship between the Gibbs energy change and the equilibrium 
constant for a chemical reaction, AGO = - RT In K, seemingly has either extensive dimen- 
sions, AGO, or intensive dimensions, RT. The discrepency is explained on the basis of an 
ellipsis, the omission of n = 1 as a multiplier, and the relationship is explicitly AGO = - RT x 
(n = 1)ln K and hence extensive. 

INTRODUCTION 

The elegant and useful thermodynamic relation AGO = - RT In K, (the 
Lewis Equation [l], AG = AGO + RT In Q, applied to reaction equilibrium 
at constant temperature and pressure), has subtleties not always immediately 
apparent, particularly the role of the solvent in liquid solutions [2,3]. 
Another kind of subtlety is that of dimensional consistency: AG clearly has 
extensive dimensions, energy, whereas the pre-logarithmic factor RT, taken 
simply as it stands, has intensive dimensions, energy per mol. If the 
dimensions are given as intensive, the implication is that there is an inherent 
Gibbs energy change for a chemical reaction independent of the stoichiome- 
try represented by the balancing coefficients even though these are arbitrary. 
In textbooks and other places this leads to confusing and inconsistent 

‘interpretation. 
Two examples which follow bring out the dimensional inconsistencies 

found in many, probably most, textbooks in discussion or applying the 
Lewis Equation. The authors of a well-known physical chemistry textbook 
[4] state “AGO is the change in standard Gibbs energy when the indicated 
numbers of moles in the unmixed reactants in their standard states at 
temperature T and 1 atm pressure react to form unmixed products in their 
standard states at the same temperature and pressure.” Clearly AGO in this 
statement is extensive. The disscussion proceeds to the reaction 

N,(g) + 3H, (g) = 2NH, (g) 
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and using 1 mol 1-l standard state a calculation at 400°C yields K= 0.500. 
Subsequently they write “AGO = - RT In K, = -(1.987 cal K-l mol-‘) 
(673 K)ln 0.500 = 927 cal mol-l” and arrive at a result with intensive 
dimensions. The author of a very recent textbook on thermodynamics [5] 
discussing the same reaction first writes “if we compute K, from 
AG’(298.2) = -32 kJ, as obtained from tabulated thermodynamic data;” 
later, in a problem he writes “With AG&, = - 33.0 kJ mol-‘, compute KP at 
300 K.” 

The purpose of this article is to show that AGO in the Lewis equation 
whether derived as by Lewis and Randall [6] or through the degree of 
advancement must be dimensionally extensive and that RT seemingly 
intensive is instead extensive. Although the derivation of the Lewis Equation 
is well known, in the development which follows elementary steps are 
elucidated in order to bring out the dimensional subtlety. 

DISCUSSION 

Consider a chemical reaction represented by 

aA+bB =cC+dD (1) 
AG for the reaction is defined as the total Gibbs energy of the unmixed 
products less the total Gibbs energy of the unmixed reactants or 

AG = GP - 6, (2) 

where G” is the total Gibbs energy and p and r denote product side and 
reactant side. pi is defined as (aG/&~~)~,r,~~+,,, and by Euler’s theorem 

AG= (c”iPi)p - (c”iPi), 

and 

The activity is defined by 

pi = RT In ai + B (4) 

with B a function of temperature only; at constant temperature and 
pressure 

pi - & = RT ln( a/as) (5) 

and 

nip, - n,,uy = n,RT ln( u/a:) (6) 

Substitution of eqn. (6) in eqn. (3) yields 

AG - AGO = RT( [ Cni ln( .Jap)]r - [En, ln( .J$)ll) (7) 
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Clearly both sides of eqn. (7) have extensive dimensions; RT, intensive, 
multiplied by number of moles, ni, is extensive. 

If eqn. (1) is written as 

0 = -aA-bB+cC+dD (8) 

and -a, -b, c, and d are identified as dimensionless coefficients, vi, with 
positive values for products and negative values for reactants, for each 
product ni = vi x (n = 1) and for each reactant ni = - vi X (n = 1). Equation 
(7) may then be written as 

AG-AGO=RTX(n=l)CVi ln(ai/aP) (9) 
or 

AG-AG”=RTx(n=l)z ln(a,/u~)” (10) 
or 

AG-AG’=RTx(n=l)lnQ (11) 

and for equilibrium at constant pressure and temperature 

AGO= -RTx (n=l)ln K (12) 

Equation (12) is dimensionally congruent and shows explicitly that there is 
an ellipsis, n = 1, in the Lewis Equation. 

A contemporary trend in textbooks is to approach chemical equilibrium 
through the degree of advancement variable, 5. Its use leads to a form of the 
Lewis Equation in which the same ellipsis as above appears not once but 
twice. 

The degree of advancement is defined by 

ni = ni,o + vi5 03) 

and hence E has dimensions of n, moles. From eqn. (13), dn i = vid< yielding 

= C ‘iPi (14) 

The De Donder affinity [7], 

aG 

A = - -g T,p i i 

is a minimum at equilibrium, and hence eqn. (14) yields Cvipi = 0 as the 
equilibrium condition; Cvipi is numerically equal to AG but is not equiv- 
alent to AG which is Cvi x (n = 1)~~. The resulting expression (aG/a[) = 
AGO + RT ln Q is explicitly 

(n = 1) x (aG/ag) =,AG”+ RTX (n = 1)ln Q (15) 

with the same ellipsis embodied twice. Of course (n = 1) X (aG/Xt) is 
simply AG. 
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Although there is no inherent AGO for a chemical reaction independent of 
the coefficients used in balancing, an inherent intensive property is defined 
if the extensive AGO is divided by the coefficients taken as representing 
number of moles: AGO/u; AGO/b; AGO/c; AGO/d. AGO/n, is then inten- 
sive and there is a referent component. 
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